Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Professor Gregory Hartland (Ed.)An improved optical design for nanosecond diffuse reflectance (DR) spectroscopy is presented. The in-situ analysis of the electron back-reaction and dye regeneration processes in efficient opaque dye-sensitized solar cell devices (DSCs) was scrutinized for the first time using nanosecond DR spectroscopy. The efficient DSC device is based on an opaque TiO2 double-layer film comprising 400 nm light-scattering particles and 20 nm optically transparent particles. Transmission-based laser techniques are not suitable for studying these or other devices by using the opaque morphologies of TiO2 films. However, time-resolved DR flash photolysis enables the exploration of photophysical processes in a broad variety of opaque or highly light-absorbing and light-scattering materials. We experimentally verified the three important components of DR-based spectroscopy: optical configuration, sample condition, and theoretical quantitative optical models. The large optical angle for diffusive light enables efficient light collection and measurement at a relatively low power. We tested the steady-state and time-resolved concentration dependence of the Kubelka−Munk theory for the quantitative analysis of time-resolved results and observed that the dynamics of electron back-reactions are strongly affected by the morphological parameters of the TiO2 films. With a lifetime of 50 μs, the kinetics of electron back-recombination in the device’s photoanode, which is manufactured with 400 nm TiO2 particles and 20 nm TiO2 particles, are 2 orders of magnitude faster than what has been reported to date for 20 nm particles (1 ms). In contrast to electron back-recombination, the dye regeneration process is not influenced by the TiO2 film morphology.more » « less
- 
            Earth-abundant Cu2BaSnS4-xSex (CBTSSe) represents a recent alter- native for Cu2ZnSn(S,Se)4 for solar energy conversion with a lower level of disorder and band tailing. We report the heterogeneous excited-state and trap-state pattern in different solution-processed CBTSSe films using ultrafast two-color pump-probe diffuse reflec- tance microscopic imaging. The spectroscopy/microscopy method can visualize and correlate the microscopic compositional and elec- tronic variations (i.e., trap states) in real space with time-resolved photophysics. Heterogeneity patterns in TAM images show that some grains exhibit a positive excited-state absorption (ESA) signal, while others show negative ground-state bleaching (GSB). Our re- sults visualize that film processing, such as air annealing and Na addition, has a clear influence on the heterogeneity of the excited- state pattern. Importantly, we report stable charge carrier over 100 ps. We applied the image principal component and histogram for quantitative analysis of TAM images to deconvolute and visu- alize the contribution and fingerprints of minority free carriers and sub-band-gap trapped carriers.more » « less
- 
            Cinzia Casiragi (Ed.)Melanin is a stable, widely light-absorbing, photoactive, and biocompatible material viable for energy con- version, photocatalysis, and bioelectronic applications. To achieve multifunctional nanostructures, we synthesized melanin nanoparticles of uniform size and controlled chemical composition (dopamelanin and eumelanin) and used them with titanium dioxide to fabricate donor–acceptor bilayers. Their size enhances the surface-to-volume ratio important for any surface-mediated functionality, such as photo- catalysis, sensing, and drug loading and release, while controlling their chemical composition enables to control the film’s functionality and reproducibility. Inkjet printing uniquely allowed us to control the de- posited amount of materials with minimum ink waste suitable for reproducible materials deposition. We studied the photochemical characteristics of the donor–acceptor melanin–TiO2 nanostructured films via photocatalytic degradation of methylene blue dye under selective UV-NIR and Vis-NIR irradiation con- ditions. Under both irradiation conditions, they exhibited photocatalytic characteristics superior to pure melanin and, under UV-NIR irradiation, superior to TiO2 alone; TiO2 is photoactive only under UV irradiation. The enhanced photocatalytic characteristics of the melanin–TiO2 nanostructured bilayer films, particularly when excited by visible light, point to charge separation at the melanin–TiO2 interface as a possible mechanism. We performed ultrafast laser spectroscopy to investigate the photochemical charac- teristics of pure melanin and the melanin–TiO2 constructs and found that their time-resolved photo- excited spectral patterns differ. We performed singular value decomposition analysis to quantitatively deconvolute and compare the dynamics of photochemical processes for melanin and melanin–TiO2 heterostructures. This observation supports electronic interactions, namely, interfacial charge separation at the melanin and TiO2 interface. The excited-state relaxation in melanin–TiO2 increases markedly from 5 ps to 400 ps. The results are remarkable for the future intriguing application of melanin-based con- structs for bioelectronics and energy conversion.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
